A First Course in Probability (10th Edition)
A First Course in Probability (10th Edition)
10th Edition
ISBN: 9780134753119
Author: Sheldon Ross
Publisher: PEARSON
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Chapter 3, Problem 3.83P

In a certain contest, the players are of equal skill and the probability is 1 2 that a specified one of the two contestants will be the victor, in a group of 2 n players, the players are paired off against each other at random. The 2 n 1 winners are again paired off randomly, and so on, until a single winner remains. Consider two specified contestant, A and B, and define the events A i , i n , E by A i :

A plays in exactly i contests

E: A and B never play each other

  1. Find P ( A i ) , i = 1 , ... , n .
  2. Find P ( E ) .
  3. Let P n = P ( E ) .
  4. Show that P n = 1 2 n 1 + 2 n + 2 2 n 1 ( 1 2 ) 2 P n 1 are use this formula to check the answer you obtained in part (b).

Hint: Find P ( E ) by conditioning on which of the events P ( A i ) , i = 1 , ... , n occur. In simplifying your answer, use the algebraic identity i = 1 n 1 i x i 1 = 1 n x n 1 + ( n 1 ) x n ( 1 x ) 2

For another approach to solving this problem, note that there are a total of 2 n 1 games played.

  1. Explain why 2 n 1 games are played.

Number these games, and let B i denote event that A and B play each other in game i , i = 1 , ... , 2 n 1 .

  • What is P ( B i ) .
  • Use part (e) to find P ( E ) .
  • Blurred answer

    Chapter 3 Solutions

    A First Course in Probability (10th Edition)

    Ch. 3 - Two cards are randomly chosen without replacement...Ch. 3 - Suppose distinct values are written on each of 3...Ch. 3 - A recent college graduate is planning to take the...Ch. 3 - Suppose that an ordinary deck of 52 cards (which...Ch. 3 - An urn initially contains 5 white and 7 black...Ch. 3 - An ectopic pregnancy is twice as likely to develop...Ch. 3 - Ninety-eight percent of all babies survive...Ch. 3 - In a certain community, 36 percent of the families...Ch. 3 - A total of 46 percent of the voters in a certain...Ch. 3 - A total of 4.8 percent of the women and 37 percent...Ch. 3 - Fifty-two percent of the students at a certain...Ch. 3 - A total of 500 married working couples were polled...Ch. 3 - A red die, a blue die, and a yellow die (all six...Ch. 3 - Urn I contains 2 white and 4 red balls, whereas...Ch. 3 - Twenty percent of Bs phone calls are with her...Ch. 3 - Each of 2 balls is painted either black or gold...Ch. 3 - The following method was proposed to estimate the...Ch. 3 - Suppose that 5 percent of men and 0.25 percent of...Ch. 3 - All the workers at a certain company drive to work...Ch. 3 - Suppose that an ordinary deck of 52 cards is...Ch. 3 - There are 15 tennis balls in a box, of which 9...Ch. 3 - Consider two boxes, one containing 1 black and 1...Ch. 3 - Ms. Aquina has just had a biopsy on a possibly...Ch. 3 - A family has j children with probability pj, where...Ch. 3 - On rainy days, Joe is late to work with...Ch. 3 - In Example 31, suppose that the new evidence is...Ch. 3 - With probability .6, the present was hidden by...Ch. 3 - Stores A, B, and C have 50, 75, and 100 employees,...Ch. 3 - a. A gambler has a fair coin and a two-headed coin...Ch. 3 - Urn A has 5 white and 7 black balls. Urn B has 3...Ch. 3 - In Example 3a, what is the probability that...Ch. 3 - Consider a sample of size 3 drawn in the following...Ch. 3 - A deck of cards is shuffled and then divided into...Ch. 3 - Twelve percent of all U.S. households are In...Ch. 3 - There are 3 coins in a box. One is a two-headed...Ch. 3 - Three prisoners are informed by their jailer that...Ch. 3 - There is a 30 percent chance that A can fix her...Ch. 3 - In any given year, a male automobile policyholder...Ch. 3 - An urn contains 5 white and 10 black balls. A fair...Ch. 3 - Each of 2 cabinets identical n appearance has 2...Ch. 3 - Prostate cancer is the most common type of cancer...Ch. 3 - Suppose that an insurance company classifies...Ch. 3 - A worker has asked her supervisor for a letter of...Ch. 3 - Players A, B, C, D are randomly lined up. The...Ch. 3 - Players 1,2,3 are playing a tournament. Two of...Ch. 3 - Suppose there are two coins, with coin 1 landing...Ch. 3 - In a 7 game series played with two teams, the...Ch. 3 - A parallel system functions whenever at least one...Ch. 3 - If you had to construct a mathematical model for...Ch. 3 - In a class, there are 4 first-year boys, 6...Ch. 3 - Suppose that you continually collect coupons and...Ch. 3 - A simplified model for the movement of the price...Ch. 3 - Suppose that we want to generate the outcome of...Ch. 3 - Independent flips of a coin that lands on heads...Ch. 3 - The color of a persons eyes is determined by a...Ch. 3 - Genes relating to albinism are denoted by A and a....Ch. 3 - Barbara and Dianne go target shooting Suppose that...Ch. 3 - A and B are involved in a duel. The rules of the...Ch. 3 - Assume, as in Example 3h, that 64 percent of twins...Ch. 3 - The probability of the closing of the ith relay in...Ch. 3 - An engineering system consisting of n components...Ch. 3 - In Problem 3.70a, find the conditional probability...Ch. 3 - A certain organism possesses a pair of each of 5...Ch. 3 - There is a 50—50 chance that the queen carries...Ch. 3 - A town council of 7 members contains a steering...Ch. 3 - Suppose that each child born to a couple is...Ch. 3 - A and B alternate rolling a pair of dice, stopping...Ch. 3 - In a certain village, it is traditional for the...Ch. 3 - Prob. 3.79PCh. 3 - Consider an unending sequence of independent...Ch. 3 - A and B play a series of games. Each game is...Ch. 3 - In successive rolls of a pair of fair dice, what...Ch. 3 - In a certain contest, the players are of equal...Ch. 3 - An investor owns shares in a stock whose present...Ch. 3 - A and B flip coins. A starts and continues...Ch. 3 - Die A has 4 red and 2 white faces, whereas die B...Ch. 3 - An urn contains 12 balls, of which 4 are white....Ch. 3 - Repeat Problem 3.87 when each of the 3 players...Ch. 3 - Let S={1,2,...,n} and suppose that A and B are,...Ch. 3 - Consider an eight team tournament with the format...Ch. 3 - Consider Example 2a, but now suppose that when the...Ch. 3 - In Example 5, what is the conditional probability...Ch. 3 - In Laplace s rule of succession (Example 5e ), are...Ch. 3 - A person tried by a 3-judge panel is declared...Ch. 3 - Each of n workers is independently qualified to do...Ch. 3 - Suppose in the preceding problem that n=2 and that...Ch. 3 - Each member of a population of size n is,...Ch. 3 - Show that if P(A)0, then P(ABA)P(ABAB)Ch. 3 - Prob. 3.2TECh. 3 - Consider a school community of m families, with ni...Ch. 3 - A ball is in any one of n boxes and is in the ith...Ch. 3 - a. Prove that if E and F are mutually exclusive,...Ch. 3 - Prove that if E1,E2,...,En are independent events,...Ch. 3 - a. An urn contains n white and m black balls. The...Ch. 3 - Let A, B, and C, be events relating to the...Ch. 3 - Consider two independent tosses of a fair coin....Ch. 3 - Two percent of women age 45 who participate in...Ch. 3 - In each of n independent tosses of a coin, the...Ch. 3 - Show that 0ai1,i=1,2,..., then...Ch. 3 - The probability of getting a head on a single toss...Ch. 3 - Suppose that you are gambling against an...Ch. 3 - Independent trials that result in a success with...Ch. 3 - Independent trials that result in a success with...Ch. 3 - Suppose that n independent trials are performed,...Ch. 3 - Let Q. denote the probability that no run of 3...Ch. 3 - Consider the gamblers ruin problem, with the...Ch. 3 - Prob. 3.20TECh. 3 - The Ballot Problem. In an election, candidate A...Ch. 3 - As a simplified model for weather forecasting,...Ch. 3 - A bag contains a white and b black balls. Balls...Ch. 3 - A round-robin tournament of n contestants is a...Ch. 3 - Prove directly thatP(EF)=P(EFG)P(GF)+P(EFGC)P(GCF)Ch. 3 - Prove the equivalence of Equations (5.11) and...Ch. 3 - Prob. 3.27TECh. 3 - Prove or give a counterexample, if E1 and E2 are...Ch. 3 - In Laplaces rule of succession (Example 5e ), show...Ch. 3 - In Laplaces rule of succession (Example 5e),...Ch. 3 - Suppose that a nonmathematical, but...Ch. 3 - In a game of bridge, West has no aces What is the...Ch. 3 - Prob. 3.2STPECh. 3 - How can 20 balls, 10 white and 10 black, be put...Ch. 3 - Prob. 3.4STPECh. 3 - An urn has r red and w white balls that are...Ch. 3 - An urn contains b black balls and r red balls. One...Ch. 3 - A friend randomly chooses two cards, without...Ch. 3 - Show that P(HE)P(GE)=P(H)P(G)P(EH)P(EG). Suppose...Ch. 3 - You ask your neighbor to water a sickly plant...Ch. 3 - Six balls are to be randomly chosen from an urn...Ch. 3 - A type C battery is in working condition with...Ch. 3 - Prob. 3.12STPECh. 3 - Balls are randomly removed from an urn that...Ch. 3 - A coin having probability .8 of landing on heads...Ch. 3 - In a certain species of rats, black dominates over...Ch. 3 - a. In Problem 3.70b, find the probability that a...Ch. 3 - For the k-out-of-n system described in Problem...Ch. 3 - Prob. 3.18STPECh. 3 - Prob. 3.19STPECh. 3 - Suppose that there are n possible outcomes of a...Ch. 3 - If A flips vand B flips n fair coins, show that...Ch. 3 - Prove or give counterexamples to the following...Ch. 3 - Let A and B be events having positive probability....Ch. 3 - Rank the following from most likely to least...Ch. 3 - Two local factories, A and B, produce radios. Each...Ch. 3 - Show that if P(AB)=1, then P(BCAC)=1Ch. 3 - Prob. 3.27STPECh. 3 - A total of 2n cards, of which 2 are aces, are to...Ch. 3 - There are n distinct types of coupons, and each...Ch. 3 - Show that for any events E and F,P(EEF)P(EF) Hint:...Ch. 3 - a. If the odds of A is 23, what is the probability...Ch. 3 - Prob. 3.32STPECh. 3 - If the events E, F, G are independent. show that...Ch. 3 - Players 1,2,3, are in a contest. Two of them are...Ch. 3 - If 4 balls are randomly chosen from an urn...Ch. 3 - In a 4 player tournament, player 1 plays player 2,...Ch. 3 - In a tournament Involving players 1,..., n,...
    Knowledge Booster
    Probability
    Learn more about
    Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, probability and related others by exploring similar questions and additional content below.
    Recommended textbooks for you
  • Algebra and Trigonometry (MindTap Course List)
    Algebra
    ISBN:9781305071742
    Author:James Stewart, Lothar Redlin, Saleem Watson
    Publisher:Cengage Learning
    College Algebra
    Algebra
    ISBN:9781305115545
    Author:James Stewart, Lothar Redlin, Saleem Watson
    Publisher:Cengage Learning
    Algebra & Trigonometry with Analytic Geometry
    Algebra
    ISBN:9781133382119
    Author:Swokowski
    Publisher:Cengage
  • Algebra and Trigonometry (MindTap Course List)
    Algebra
    ISBN:9781305071742
    Author:James Stewart, Lothar Redlin, Saleem Watson
    Publisher:Cengage Learning
    College Algebra
    Algebra
    ISBN:9781305115545
    Author:James Stewart, Lothar Redlin, Saleem Watson
    Publisher:Cengage Learning
    Algebra & Trigonometry with Analytic Geometry
    Algebra
    ISBN:9781133382119
    Author:Swokowski
    Publisher:Cengage
    Bayes' Theorem 1: Introduction and conditional probability; Author: Dr Nic's Maths and Stats;https://www.youtube.com/watch?v=lQVkXfJ-rpU;License: Standard YouTube License, CC-BY
    What is Conditional Probability | Bayes Theorem | Conditional Probability Examples & Problems; Author: ACADGILD;https://www.youtube.com/watch?v=MxOny_1y2Q4;License: Standard YouTube License, CC-BY
    Bayes' Theorem of Probability With Tree Diagrams & Venn Diagrams; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=OByl4RJxnKA;License: Standard YouTube License, CC-BY
    Bayes' Theorem - The Simplest Case; Author: Dr. Trefor Bazett;https://www.youtube.com/watch?v=XQoLVl31ZfQ;License: Standard Youtube License